当前位置: 高倍率锂威尼斯威尼斯人 > 资讯中心 > 行业资讯

锂威尼斯常识全面先容

来源:锂威尼斯常识???2020-04-10??阅读数:

?锂威尼斯(Lithium battery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物)的威尼斯。锂威尼斯大致可分为两类:锂金属威尼斯和锂离子威尼斯。锂金属威尼斯通常是不可充电的,且内含金属态的锂。锂离子威尼斯不含有金属态的锂,并且是可以充电的。

折叠威尼斯化学反应原理

锂金属威尼斯  

锂金属威尼斯是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的威尼斯。最早出现的锂威尼斯使用以下反应:Li+MnO2=LiMnO2,该反应为氧化还原反应,放电。

锂离子威尼斯

正极

正极材料:可选的正极材料很多,目前主流产品多采用锂铁磷酸盐。不同的正极材料对照:

LiCoO2 3.7 V 140 mAh/g

Li2Mn2O4 4.0 V 100 mAh/g

LiFePO4 3.3 V 100 mAh/g

Li2FePO4F V 115 mAh/g

磷酸铁锂系

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO4 → Li1-xFePO4 + xLi+ + xe-放电时:Li1-xFePO4 + xLi+ + xe- → LiFePO4

负极

负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi+ + xe- + 6C → LixC6放电时:LixC6 → xLi+ + xe- + 6C

钴酸锂系

正极上发生的反应为

LiCoO2=充电=Li1-xCoO2+XLi+ + Xe-

Li1-xCoO2+XLi+ + Xe-=放电=LiCoO2

负极上发生的反应为

6C+XLi+ + Xe-=充电=LixC6

LixC6=放电=6C+XLi+ + Xe-

最早得以应用于心脏起搏器中。锂威尼斯的自放电率极低,放电电压平缓。使得起植入人体的搏器能够长期运作而不用重新充电。锂威尼斯一般有高于伏的标称电压,更适合作集成电路电源。二氧化锰威尼斯,就广泛用于计算器,数位相机、手表中。

为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫威尼斯和锂亚硫酰氯威尼斯就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂威尼斯的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜威尼斯的研究。

1992年索尼成功开发锂离子威尼斯。它的实用化,使人们的行动电话、笔记本、计算器等携带型电子设备重量和体积大大减小。使用时间大大延长。由于锂离子威尼斯中不含有重金属镉,与镍镉威尼斯相比,大大减少了对环境的污染。

锂威尼斯通常分两大类:

锂金属威尼斯:锂金属威尼斯一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的威尼斯。

锂离子威尼斯:锂离子威尼斯一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的威尼斯。

虽然锂金属威尼斯的能量密度高,理论上能达到3860瓦/公斤。但是由于其性质不够稳定而且不能充电,所以无法作为反复使用的动力威尼斯。而锂离子威尼斯由于 具有反复充电的能力,被作为主要的动力威尼斯发展。但因为其配合不同的元素,组成的正极材料在各方面性能差异很大,导致业内对正极材料路线的纷争加大。

通常大家说得最多的动力威尼斯主要有磷酸铁锂威尼斯、锰酸锂威尼斯、钴酸锂威尼斯以及三元锂威尼斯(三元镍钴锰)。[3]

1 1970年代埃克森的采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂威尼斯。

2. 1980年,J. Goodenough 发现钴酸锂可以作为锂离子威尼斯正极材料.

3 1982年伊利诺伊理工大学(the Illinois Institute of Technology)的和发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂威尼斯,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电威尼斯。首个可用的锂离子石墨电极由贝尔实验室试制成功。

4 1983年、等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。

5 1989年,和发现采用聚合阴离子的正极将产生更高的电压。

6 1991年SONY企业发布首个商用锂离子威尼斯。随后,锂离子威尼斯革新了消费电子产品的面貌。

7 1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸锂铁(LiFePO4),比传统的正极材料更具优越性,因此已成为当前主流的正极材料。

由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂威尼斯生产要在特殊的环境条件下进行。但是由于锂威尼斯的很多优点,锂威尼斯被广泛的应用在电子仪表、数码和家电产品上。但是,锂威尼斯多数是二次威尼斯,也有一次性威尼斯。少数的二次威尼斯的寿命和安全性比较差。

后来,日本SONY企业发明了以炭材料为负极,以含锂的化合物作正极的锂威尼斯,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子威尼斯。当对威尼斯进行充电时,威尼斯的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对威尼斯进行放电时(即大家使用威尼斯的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。大家通常所说的威尼斯容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为威尼斯的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式威尼斯。

随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子威尼斯以优异的性能在这类产品中得到广泛应用,并在近年逐步向其他产品应用领域发展。1998年,天津电源研究所开始商业化生产锂离子威尼斯。习惯上,人们把锂离子威尼斯也称为锂威尼斯,但这两种威尼斯是不一样的。现在锂离子威尼斯已经成为了主流。

据《中国锂威尼斯行业市场需求预测与投资战略规划分析报告》 中资料显示:中国锂电行业的突出问题是产业链投资热度不减的同时无序竞争加剧,下游需求持续疲软,行业艰难前行 中国锂电产业的发展路径基本是草根状态自发生长形成,企业基本上都是单一业务经营,特点是:实力有限,规模小,生存压力大,可持续发展艰难。但由于新能源汽车广阔的市场空间,加上政府政策面的不断支撑,中国锂电产业链投资热度不减,行业内无序竞争加剧。

低端制造环节产能严重过剩,高端环节投入不足,锂电原材料价格持续回落。 从产业发展路径上,立足于消费电子领域,以电动工具和电动自行车等中小锂电威尼斯作为发展契机,再到混动威尼斯最后到纯电动威尼斯是正常的发展轨迹。而目前电动工具和电动自行车仍以镍镉和铅酸威尼斯为主,锂威尼斯应用局面发展缓慢;混动主要技术在国外,混动汽车产品也是以外资品牌为主,从国家支撑上看,更多倾斜到纯电动汽车。但由于纯电动的材料和技术距离大规模应用还有距离,导致需求不足,进而使得锂威尼斯产业链面临投资热度不减但需求疲软的尴尬局面。

虽然道路是曲折,但是前景依旧美好,上游威尼斯材料国内早已走出导入期,步入快速成长期,目前已经涌现出一批具有国际先进水平的材料企业。这些企业专注核心技术开发,针对下游客户不同的需求,协同其联合开发产品。通过自身强大的技术开拓能力和客户服务能力获得客户认可,不断进入顶尖威尼斯厂商的供应链体系。通过协同合作进一步提升自身实力,达到一种良性循环。

国内一批材料巨头企业随着核心技术的快速进步和市占率的不断提升,强者恒强,这是大家重点关注的对象。 从中游Cell和下游Pack来看,目前许多重要的消费性装置都是选择中国为组装基地,连带使得包括日韩威尼斯芯与威尼斯组装厂也落脚中国,国内厂商的产能同样快速发展。中游Cell环节为了应对逐步下滑的产品价格,越来越多的厂商切入威尼斯组装加工,包括SONY、SAMSUNG、乐金、新能源、比亚迪等,特别在方形威尼斯与聚合物威尼斯,更是全面占据单威尼斯芯组装的供给角色。方形威尼斯因大多应用在手机商品,几乎全部由威尼斯芯厂组装;聚合物威尼斯单颗电芯几乎都是威尼斯芯厂完全自主组装,只有多串并的应用才会交由组装厂组装加工。中游Cell与下游Pack从过去的单纯上下游关系逐渐演变成为暨合作又竞争的关系,未来竞争的关系会逐渐加重。

折叠锂威尼斯材料

锂威尼斯负极材料大体分为以下几种:

第一种是碳负极材料: 

目前已经实际用于锂离子威尼斯的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。

第二种是锡基负极材料:

锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。

第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。

第四种是合金类负极材料:

包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金 ,目前也没有商业化产品。

第五种是纳米级负极材料:纳米碳管、纳米合金材料。

第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限企业根据2009年锂威尼斯新能源行业的市场发展最新动向,诸多企业已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂威尼斯的充放电量和充放电次数。

技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国锂威尼斯材料市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解锂威尼斯材料生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。

导电涂层也称为预涂层,在锂威尼斯行业内通常指涂覆于正极集流体——铝箔表面的一层导电涂层,涂覆导电涂层的铝箔称为预涂层铝箔或简称涂层铝箔,其最早在威尼斯中的实验可以追溯到70年代,而近几年随着新能源行业,特别是磷酸铁锂威尼斯的发展而风生水起,成为业内大受欢迎的新技术或新材料。

性能

导电涂层在锂威尼斯中能够有效提高极片附着力,减少粘结剂的使用量,同时对于威尼斯的电性能也有显著提升。

1. 接触电阻下降40%

2. 胶黏剂用量降低50%

3. 同倍率下,威尼斯电压平台提升20%

4. 材料与集流体附着力提高30%,经过长期循环不会有脱层现象

锂威尼斯涂碳铝箔使用说明

一、材质说明

涂碳铝箔是由导电碳为主的复合型浆料与高纯度的电子铝箔,以转移式涂覆工艺制成。

二、应用范围

Ø细颗粒活性物质的功率型锂威尼斯

Ø正极为磷酸亚铁锂

Ø正极为细颗粒的三元/锰酸锂

Ø用于超级电容器、锂一次威尼斯(锂亚、锂锰、锂铁、扣式等)替代蚀刻铝箔

三、对威尼斯/电容的性能作用

Ø抑制威尼斯极化,减少热效应,提高倍率性能;

Ø降低威尼斯内阻,并明显降低了循环过程的动态内阻增幅;

Ø提高一致性,增加威尼斯的循环寿命;

Ø提高活性物质与集流体的粘附力,降低极片制造成本;

Ø保护集流体不被电解液腐蚀;

Ø提高磷酸铁锂威尼斯的高、低温性能,改善磷酸铁锂、钛酸锂材料的加工性能。

四、建议参数

对应涂覆的活性物质D50最好不大于4~5μm,压实密度不大于,比表面积在13~18㎡/g范围内。

五、使用中的注意事项

1.存储要求:在温度为25±5℃、湿度为不超过50%的环境中,运输时须避免空气和水蒸气对铝箔的侵蚀;

2.本产品分为A、B两款,各自的关键特性为:A款外观为黑色,常规涂层厚度为双面4~8μm,导电性能较更为突出;B款外观为淡灰色,常规涂层厚度为双面2~3μm,涂层区可做较少层的焊接,并可以涂布机识别跳间隙;

款(灰色)涂碳铝箔可以在涂层区直接做超声焊,只适合卷绕式威尼斯焊接极耳(极片最多2-3层),但超声的功率、时间需做一些微调;

4.碳层的散热性要比铝箔差些,故做涂布时需对带速与烘烤温度适当微调;

5.本产品对锂威尼斯与电容的综合性能有较可观的提升,但不可作为改变威尼斯某方面性能的主要因素,如威尼斯能量密度、高低温性能、高电压等等。

折叠锂威尼斯鼓壳

一、锂威尼斯外壳特性

锂,原子序数3,原子量,是最轻的碱金属元素。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了纳米等级的细小储存格子,可用来储存锂原子。这样一来,即使是威尼斯外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子威尼斯的这种原理,使得 人们在获得它高容量密度的同时,也达到安全的目的。 锂离子威尼斯充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负 极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止威尼斯的正负极直接碰触 而短路,威尼斯内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在威尼斯温度过高时, 自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施

锂威尼斯芯过充到电压高于 后,会开始产生副作用。过充电压愈高,危险性也跟着愈高。锂电芯电压 高于 后, 正极材料内剩下的锂原子数量不到一半, 此时储存格常会垮掉, 让威尼斯容量产生永久性的下降。 如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。这些锂原子会 由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜纸,使正负极短路。有时在短路 发生前威尼斯就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得威尼斯外壳或压力阀鼓涨破 裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。因此,锂威尼斯充电时,一定要设定电压上限, 才可以同时兼顾到威尼斯的寿命、容量、和安全性。最理想的充电电压上限为 。 锂电芯放电时也要有电压下限。 当电芯电压低于 时, 部分材料会开始被破坏。 又由于威尼斯会自放电, 放愈久电压会愈低,因此,放电时最好不要放到 才停止。锂威尼斯从 V 放电到 这段期间,所释放 的能量只占威尼斯容量的 3%左右。因此,V 是一个理想的放电截止电压。 充放电时,除了电压的限制,电流的限制也有其必要。电流过大时,锂离子来不及进入储存格,会聚集 于材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。万一 威尼斯外壳破裂,就会爆炸。 因此,对锂离子威尼斯的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。一般锂电 池组内,除了锂威尼斯芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。但是,保护板的这三 项保护显然是不够的,全球锂威尼斯爆炸事件还是频传。要确保威尼斯系统的安全性,必须对威尼斯爆炸的原因, 进行更仔细的分析。

二、爆炸的原因分析

1、内部极化较大

2、极片吸水,与电解液发生反应气鼓

3、电解液本身的质量,性能问题

4、注液时候注液量达不到工艺要求

5、装配制程中激光焊焊接密封性能差,漏气,测漏气时漏测

6、粉尘,极片粉尘首先易导致微短路

7、正负极片较工艺范围偏厚,入壳难

8、注液封口问题,钢珠密封性能不好导致气鼓

9、壳体来料存在壳壁偏厚,壳体变形影响厚度.

三、爆炸类型分析

爆炸类型分析 威尼斯芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。此处的外部系指电芯的外部,包含了电 池组内部绝缘设计不良等所引起的短路。 当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电 池外壳撑大。当威尼斯内部温度高到 135 摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎 终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。但是,细孔关闭率太差,或是细孔根本不会关闭 的隔膜纸,会让威尼斯温度继续升高,更多的电解液汽化,最后将威尼斯外壳撑破,甚至将威尼斯温度提高到使材 料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。这些细小 的针状金属,会造成微短路。由于,针很细有一定的电阻值,因此,电流不见得会很大。铜铝箔毛刺系在生 产过程造成,可观察到的现象是威尼斯漏电太快,多数可被电芯厂或是组装厂筛检出来。而且,由于毛刺细小, 有时会被烧断,使得威尼斯又恢复正常。因此,因毛刺微短路引发爆炸的机率不高。 这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良威尼斯,但是却鲜少发生爆炸事 件,得到统计上的支撑。因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处 都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。因此,威尼斯温度会逐渐升高,最后高温将电 解液气体。这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈 氧化,都是爆炸收场。 但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。有可能威尼斯温度还未高到让材料 燃烧、产生的气体也未足以撑破威尼斯外壳时,消费者就终止充电,带手机出门。这时众多的微短路所产生的 热,慢慢的将威尼斯温度提高,经过一段时间后,才发生爆炸。消费者共同的描述都是拿起手机时发现手机很 烫,扔掉后就爆炸。 综合以上爆炸的类型,大家可以将防爆重点放在 过充的防止、外部短路的防止、及提升电芯安全性三方 防爆重点放在 面。其中过充防止及外部短路防止属于电子防护,与威尼斯系统设计及威尼斯组装有较大关系。电芯安全性提升 之重点为化学与机械防护,与威尼斯芯制造厂有较大关系。

四、设计规范

由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。由于,电路板的故障率 一般都远高于一亿分之一。因此,威尼斯系统设计时,必须有两道以上的安全防线。常见的错误设计是用充电 器(adaptor)直接去充威尼斯组。这样将过充的防护重任,完全交给威尼斯组上的保护板。虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。 威尼斯系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两 道防护就可以将失败率降到一亿分之一。常见的威尼斯充电系统方块图如下,包含充电器及威尼斯组两大部分。

①充电器又包含适配器(Adaptor)及充电控制器两部分。适配器将交流电转为直流电,充电控制器则限制直流 电的最大电流及最高电压。

②威尼斯组包含保护板及威尼斯芯两大部分,以及一个 PTC 来限定最大电流。下面图中 适配器交流变直流文字方块作用:电控制器限流限压。充电器文字方块作用: 保护板过充、 过放、过流等防护。 威尼斯组文字方块作用: 限流片。威尼斯芯以手机威尼斯系统为例,过充防护系 统利用充电器输出电压设定在 左右,来达到第一层防护,这样就算威尼斯组上的保护板失效,威尼斯也不会 被过充而发生危险。第二道防护是保护板上的过充防护功能,一般设定为 。这样,保护板平常不必负责 切断充电电流,只有当充电器电压异常偏高时,才需要动作。过电流防护则是由保护板及限流片来负责,这 也是两道防护,防止过电流及外部短路。由于过放电只会发生在电子产品被使用的过程。因此,一般设计是 由该电子产品的线路板来提供第一道防护,威尼斯组上的保护板则提供第二道防护。当电子产品侦测到供电电 压低于 V 时,应该自动关机。如果该产品设计时未设计这项功能,则保护板会在电压低到 时,关闭 放电回路。

总论:威尼斯系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。把保护板拿掉后充电,如果威尼斯会爆炸就代表设计不良。 把保护板拿掉后充电,如果威尼斯会爆炸就代表设计不良。 上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电 器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。结果,劣币驱逐良币,市面上出现了许多劣质 充电器。这使得过充防护失去了第一道也是最重要的一道防线。而过充又是造成威尼斯爆炸的最重要因素,因 此,劣质充电器可以称得上是威尼斯爆炸事件的元凶。 当然,并非所有的威尼斯系统都采用如上图的方案。在有些情况下,威尼斯组内也会有充电控制器的设计。

例如:许多笔记型计算机的外加威尼斯棒,就有充电控制器。这是因为笔记型计算机一般都将充电控制器做在 计算机内,只给消费者一个适配器。因此,笔记型计算机的外加威尼斯组,就必须有一个充电控制器,才能确 保外加威尼斯组在使用适配器充电时的安全。另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在 威尼斯组内。 最后的防线:如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。电芯的安全层级, 可依据电芯能否通过外部短路和过充来大略区分等级。由于,威尼斯爆炸前,如果内部有锂原子堆积在材料表 面,爆炸威力会更大。而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能 力比抗外部短路的能力更重要。 铝壳电芯与钢壳电芯安全性比较 铝壳相对于钢壳具有很高的安全优势。

锂威尼斯正、 负极碳管? 锂离子威尼斯正、负极活性材内为何要加 VGCF 碳管?

1. 不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有 20%(理论值:)膨胀收缩率, 而像 LFP 正极材料有 6%(理论值:2 %左右)膨胀收收率。当多次充放电中,其正、负活性材颗粒与颗粒之 间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不 再参与电极反应。因此循环使用寿命下降。VGCF 碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活 性材颗粒间之间隙,可藉由 VGCF 碳管架桥连接,电子与离子传输不会间断。

锂--二氧化锰威尼斯(CR)

以金属锂为负极,以经过热处理的二氧化锰为正极,隔离膜采用PP或PE膜,圆柱型威尼斯与锂离子威尼斯隔膜一样,电解液为高氯酸锂的有机溶液,圆柱式或扣式。威尼斯需要在湿度≤1%的干燥环境下生产。

特点:低自放电率,年自放电可≤1%,全密封(金属焊接,lazer seal)威尼斯可满足10年寿命,半密封威尼斯一般是5年,如果工作控制不好的话,还达不到这个寿命。在圆柱型锂锰威尼斯开发方面做得比较好的亿纬,目前已实现自动化生产,威尼斯可以做到短路、过放电等测试不爆炸。

一般在台式电脑的主板上,有一个扣式的锂威尼斯,提供微弱的电流,可以正常使用3年左右,一些宾馆的门禁卡、仪器仪表等也使用锂--二氧化锰威尼斯,近年来使用量逐年下降。

锂--亚硫酰氯威尼斯

以金属锂为负极,正极和电解液为亚硫酰氯(氯化亚砜),圆柱式威尼斯,装配完成即有电,电压,是工作电压最平稳的威尼斯种类之一,也是目前单位体积(质量)容量最高的威尼斯。适合在不能经常维护的电子仪器设备上使用,提供细微的电流。

其他锂威尼斯还有锂--硫化亚铁威尼斯、锂--二氧化硫威尼斯等。

折叠锂离子威尼斯

锂离子威尼斯目前由液态锂离子威尼斯(LIB)和聚合物锂离子威尼斯(PLB)两类。其中,液态锂离子威尼斯是指 Li +嵌入化合物为正、负极的二次威尼斯。正极采用锂化合物LiCoO?或LiMn?O?,负极采用锂-碳层间化合物。锂离子威尼斯由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。

锂离子威尼斯

1992年索尼成功开发锂离子威尼斯。它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。使用时间大大延长。由于锂离子威尼斯中不含有重金属镉,与镍镉威尼斯相比,大大减少了对环境的污染。

锂威尼斯的污染还是有的。

折叠锂威尼斯的结构

锂威尼斯两种外型

锂威尼斯通常有两种外型:圆柱型和方型。威尼斯内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。威尼斯内充有有机电解质溶液。另外还装有安全阀和PTC元件(部分圆柱式使用),以便威尼斯在不正常状态及输出短路时保护威尼斯不受损坏。

单节锂威尼斯的电压为(磷酸亚铁锂正极的为),威尼斯容量也不可能无限大,因此,常常将单节锂威尼斯进行串、并联处理,以满足不同场合的要求。

折叠锂威尼斯的应用

随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂威尼斯随之进入了大规模的实用阶段。

最早得以应用的是锂亚原威尼斯,用于心脏起搏器中。由于锂亚威尼斯的自放电率极低,放电电压十分平缓。使得起搏器植入人体长期使用成为可能。

锂锰威尼斯一般有高于伏的标称电压,更适合作集成电路电源,广泛用于计算机、计算器、手表中。

现在,锂离子威尼斯大量应用在手机、笔记本电脑、电动工具、电动车、路灯备用电源、航灯、家用小电器上,可以说是最大的应用群体。

折叠研究与发展前景

为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫威尼斯和锂亚硫酰氯威尼斯就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂威尼斯的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜威尼斯的研究。

锂威尼斯广泛应用于水力、火力、风力和太阳能电站等储能电源系统,邮电通讯的不间断电源,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。

锂离子威尼斯以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子威尼斯已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。随着能源的紧缺和世界的环保方面的压力。锂电现在被广泛应用于电动车行业,特别是磷酸铁锂材料威尼斯的出现,更推动了锂威尼斯产业的发展和应用。

折叠“超级”锂威尼斯

刚研发出来的超级锂威尼斯能在短时间迅速充电完成,例如手机充电一般20秒,这种威尼斯有可能加大威尼斯未来的使用领域,例如使用在电动汽车上,使中途充电如加油一般方便。

锂威尼斯主要优点: 1.能量比较高。具有高储存能量密度,目前已达到460-600Wh/kg,是铅酸威尼斯的约6-7倍;

2.使用寿命长,使用寿命可达到6年以上,磷酸亚铁锂为正极的威尼斯1C(100%DOD)充放电,有可以使用10,000次的记录;

3.额定电压高(单体工作电压为或),约等于3只镍镉或镍氢充电威尼斯的串联电压,便于组成威尼斯电源组;

4.具备高功率承受力,其中电动汽车用的磷酸亚铁锂锂离子威尼斯可以达到15-30C充放电的能力,便于高强度的启动加速;

5.自放电率很低,这是该威尼斯最突出的优越性之一,目前一般可做到1%/月以下,不到镍氢威尼斯的1/20;

6.重量轻,相同体积下重量约为铅酸产品的1/6-1/5;

7.高低温适应性强,可以在-20℃--60℃的环境下使用,经过工艺上的处理,可以在-45℃环境下使用;

8.绿色环保,不论生产、使用和报废,都不含有、也不产生任何铅、汞、镉等有毒有害重金属元素和物质。

9.生产基本不消耗水,对缺水的我国来说,十分有利。

比能量指的是单位重量或单位体积的能量。比能量用Wh/kg或Wh/L来表示。Wh是能量的单位,W是瓦、h是小时;kg是千克(重量单位),L是升(体积单位)。

1.锂原威尼斯均存在安全性差,有发生爆炸的危险。

2.钴酸锂的锂离子威尼斯不能大电流放电,安全性较差。

3.锂离子威尼斯均需保护线路,防止威尼斯被过充过放电。

4.生产要求条件高,成本高。

为了避免因使用不当造成威尼斯过放电或者过充电,在单体锂离子威尼斯内设有三重保护机构。一是采用开关元件,当威尼斯内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,威尼斯内部反应停止;三是设置安全阀(就是威尼斯顶部的放气孔),威尼斯内部压力上升到一定数值时,安全阀自动打开,保证威尼斯的使用安全性。

有时,威尼斯本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,威尼斯内压便会急剧上升而引起爆炸。

一般情况下,锂离子威尼斯储存的总能量和其安全性是成反比的,随着威尼斯容量的增加,威尼斯体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子威尼斯,基本要求是发生安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子威尼斯,特别是汽车等用大容量锂离子威尼斯,采用强制散热尤为重要。

选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。

另外,采用锰酸锂材料还可以大幅度降低成本。

提高现有安全控制技术的性能,首先要提高锂离子威尼斯芯的安全性能,这对大容量威尼斯尤为重要。选择热关闭性能好的隔膜,隔膜的作用是在隔离威尼斯正负极的同时,允许锂离子的通过。当温度升高时,在隔膜熔化前进行关闭,从而使内阻上升至2000欧姆,让内部反应停止下来。

当内部压力或温度达到预置的标准时,防爆阀将打开,开始进行卸压,以防止内部气体积累过多,发生形变,最终导致壳体爆裂。

提高控制灵敏度、选择更灵敏的控制参数和采用多个参数的联合控制(这对于大容量威尼斯尤为重要)。对于大容量锂离子威尼斯组是串/并联的多个电芯组成,如笔记本电脑的电压为10V以上,容量较大,一般采用3~4个单威尼斯串联就可以满足电压要求,然后再将2~3个串联的威尼斯组并联,以保证较大的容量。

大容量威尼斯组本身必须设置较为完善的保护功能,还应考虑两种电路基板模块:保护电路基板(Protection Board PCB)模块及Smart Battery Gauge Board模块。整套的威尼斯保护设计包括:第1级保护IC(防止威尼斯过充、过放、短路),第2级保护IC(防止第2次过压)、保险丝、LED指示、温度调节等部件。

在多级保护机制下,即使是在电源充电器、笔记本电脑出现异常的情况下,笔记本威尼斯也只能转为自动保护状态,如果情况不严重,往往在重新插拔后还能正常工作,不会发生爆炸。

目前,笔记本电脑和手机使用的锂离子威尼斯所采用的底层技术是不安全的,需要考虑更安全的结构。

总之,随着材料技术的进步和人们对锂离子威尼斯设计、制造、检测和使用诸方面要求的认识不断加深,未来的锂离子威尼斯会变得更安全。

折叠新威尼斯切勿过充

目前市面上所使用的二次威尼斯主要有镍氢(Ni-MH)与锂离子(Li-ion)两种类型。锂离子威尼斯中已经量产的有液体锂离子威尼斯(LiB)和聚合物锂离子威尼斯(LiP)两种。所以在许多情况下,威尼斯上标注了Li-ion的,一定是锂离子威尼斯。但不一定就是液体锂离子威尼斯,也有可能是聚合物锂离子威尼斯。在使用锂威尼斯中应注意的是,威尼斯放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂威尼斯很容易激活,只要经过3-5次正常的充放电循环就可激活威尼斯,恢复正常容量。由于锂威尼斯本身的特性,决定了它几乎没有记忆效应。因此用户手机中的新锂威尼斯在激活过程中,是不需要特别的方法和设备的。不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。

对于新买的锂离子威尼斯的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便 激活 威尼斯。这种“前三次充电要充12小时以上”的说法,明显是从镍威尼斯(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。锂威尼斯和镍威尼斯的充放电特性有非常大的区别,而且可以非常明确的告诉大家,所有严肃的正式技术资料都强调过充和过放电会对锂威尼斯、特别是液体锂离子威尼斯造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。

那么威尼斯需要激活吗?答案是肯定的,需要激活!但是,这个过程是由生产厂家完成的,与用户无关,用户也没有能力完成。锂威尼斯真正的激活过程是这样的:锂离子威尼斯壳灌输电解液--封口--化成,就是恒压充电,然后放电,如此进行几个循环,使电极充分浸润电解液充分活化,直至容量达到要求为止,这个就是激活过程--分容,也就是说出厂后锂离子威尼斯到用户手上已经是激活过的了。另外,其中有些威尼斯的激活过程需要威尼斯处于开口状态,激活以后再封口,除非您拥有了电芯生产设备,否则如何完成?

可是为什么有些产品的说明书上写着,建议用户前三次使用,要对手机进行完全的充放电呢?难道这不是激活吗?其实事实是这样的,在威尼斯出厂,然后销售,再到用户的手中,会经历一段时间,一个月或者几个月,这样一来,威尼斯的电极材料就会“钝化”,此时容量低于正常值,使用时间亦随之缩短。但锂威尼斯很容易 激活,只要经过3—5次正常的充放电循环就可 激活 威尼斯,恢复正常容量。由于锂威尼斯本身的特性,决定了它几乎没有记忆效应。因此用户新锂威尼斯在激活过程中,是不需要特别的方法和设备的。

折叠长充、深充的危险

长充可能导致过充。锂威尼斯或充电器在威尼斯充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。也就是说,如果你的锂威尼斯在充满后,放在充电器上也是白充。而大家谁都无法保证威尼斯的充放电保护电路的特性永不变化和质量的万无一失,所以你的威尼斯将长期处在危险的边缘徘徊。这也是大家反对长充电的另一个理由。

在对某些机器上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。也许这种做法的厂商自有其目的,但显然对威尼斯的寿命而言是不利的。同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,许多地方夜间的电压都比较高,而且波动较大。前面已经说过,锂威尼斯是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。

事实上,浅放浅充对于锂电更有益处,只有在产品的电源模块为锂电做校准时,才有深放深充的必要。所以,使用锂电供电的产品不必拘泥于过程,一切以方便为先,随时充电。

折叠过充、过放的危害

锂离子威尼斯的额定电压,因为近年材料的变化,一般为,磷酸铁锂(以下称磷铁)正极的则为。充满电时的终止充电电压一般是,磷铁。锂离子威尼斯的终止放电电压为~V(威尼斯厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为V,磷铁为)。低于(磷铁)继续放电称为过放,低电压的过放或自放电反应会导致锂离子活性物质分解破坏,并不一定可以还原。而锂离子威尼斯任何形式的过充都会导致威尼斯性能受到严重破坏,甚至爆炸。锂离子威尼斯在充电过程必需避免对威尼斯产生过充。

折叠参考威尼斯寿命

锂离子威尼斯只能充放电500次?

相信绝大部分消费者都听说过,锂威尼斯的寿命是“500次”,500次充放电,超过这个次数,威尼斯就“寿终正寝”了,许多朋友为了能够延长威尼斯的寿命,每次都在威尼斯电量完全耗尽时才进行充电,这样对威尼斯的寿命真的有延长作用吗?答案是否定的。 锂威尼斯的寿命是“500次”,指的不是充电的次数,而是一个充放电的周期。

一个充电周期意味着威尼斯的所有电量由满用到空,再由空充到满的过程,这并不等同于充一次电。比如说,一块锂电在第一天只用了一半的电量,然后又为它充满电。如果第二天还如此,即用一半就充,总共两次充电下来,这只能算作一个充电周期,而不是两个。因此,通常可能要经过好几次充电才完成一个周期。每完成一个充电周期,威尼斯容量就会减少一点。不过,这个电量减少幅度非常小,高品质的威尼斯充过多次周期后,仍然会保留原始容量的 80%,很多锂电供电产品在经过两三年后仍然照常使用。当然,锂电寿命到了最终后仍是需要更换的。

而所谓500次,是指厂商在恒定的放电深度(如80%)实现了625次左右的可充次数,达到了500个充电周期。

(80%*625=500)(忽略锂威尼斯容量减少等因素)

而由于实际生活的各种影响,特别是充电时的放电深度不是恒定的, 所以"500个充电周期"只能作为参考威尼斯寿命。

折叠寿命及影响因素

锂威尼斯一般能够充放300-500次。最好对锂威尼斯进行部分放电,而不是完全放电,并且要尽量避免经常的完全放电。一旦威尼斯下了生产线,时钟就开始走动。不管你是否使用,锂威尼斯的使用寿命都只在最初的几年。威尼斯容量的下降是由于氧化引起的内部电阻增加(这是导致威尼斯容量下降的主要原因)。最后,电解槽电阻会达到某个点,尽管这时威尼斯充满电,但威尼斯不能释放已储存的电量。

锂威尼斯的老化速度是由温度和充电状态而决定的。下表说明了两种参数下威尼斯容量的降低。

温度 充电 40% 充电100%

0°C 一年后容量98% 一年后容量94%

25°C 一年后容量96% 一年后容量80%

40°C 一年后容量85% 一年后容量65%

60°C 一年后容量75% 三个月后容量60%

由图可见,高充电状态和增加的温度加快了威尼斯容量的下降。

如果可能的话,尽量将威尼斯充到40%放置于阴凉地方。这样可以在长时间的保存期内使威尼斯自身的保护电路运作。如果充满电后将威尼斯置于高温下,这样会对威尼斯造成极大的损害。(因此当大家使用固定电源的时候,此时威尼斯处于满充状态,温度一般是在25-30°C之间,这样就会损害威尼斯,引起其容量下降)。

锂威尼斯常识全面先容

影响因素1:放电深度与可充电次数

由实验得出的左图数据可以知道,可充电次数和放电深度有关,威尼斯放电深度越深,可充电次数就越少。

可充电次数*放电深度=总充电周期完成次数,总充电周期完成次数越高,代表威尼斯的寿命越高,即可充电次数*放电深度 = 实际威尼斯寿命(忽略其他因素)

影响因素2:过充、过放、以及大的充电和放电电流

避免对威尼斯产生过充,锂离子威尼斯任何形式的过充都会导致威尼斯性能受到严重破坏,甚至爆炸。

避免低于2V或的深度放电,因为这会迅速永久性损坏锂离子威尼斯。可能发生内部金属镀敷,这会引起短路,使威尼斯不可用或不安全。

大多数锂离子威尼斯在威尼斯组内部都有电子电路,如果充电或放电时威尼斯电压低于、超过或如果威尼斯电流超过预定门限值,该电子电路就会断开威尼斯连接。

避免大的充电和放电电流,因为大电流给威尼斯施加了过大的压力。

影响因素3:过热或过冷环境  

温度对锂威尼斯寿命也有较大的影响。冰点以下环境有可能使锂威尼斯在电子产品打开的瞬间烧毁,而过热的环境则会缩减威尼斯的容量。因此,如果笔记本长期使用外接电源也不将威尼斯取下来,威尼斯就长期处于笔记本排出的高热当中,很快就会报废。

影响因素4:长时间满电、无电状态

过高和过低的电量状态对锂威尼斯的寿命有不利影响。大多数售卖电器或威尼斯上标识的可反复充电次数,都是以放电80%为基准测试得出的。实验表明,对于一些笔记本电脑的锂威尼斯,经常让威尼斯电压超过标准电压伏特,即从伏上升到伏,那么威尼斯的寿命会减半,再提高伏,则寿命减为原来的1/3;给威尼斯充电充得越满,威尼斯的损耗也会越大。长期低电量或者无电量的状态则会使威尼斯内部对电子移动的阻力越来越大,于是导致威尼斯容量变小。锂威尼斯最好是处于电量的中间状态,那样的话威尼斯寿命最长。

由上可以总结出以下几点可延长锂威尼斯容量和寿命的注意事项。

1.如果长期用外接电源为笔记本电脑供电,或者威尼斯电量已经超过80%,马上取下威尼斯。平时充电不需将威尼斯充满,充至80%左右即可。调整操作系统的电源选项,将电量警报调至20%以上,平时威尼斯电量最低不要低于20%。

2.手机等小型电子设备,充好电就应立即断开电源线 (包括充电功能的USB接口),一直连接会损害威尼斯。要经常充电,但不必非得把威尼斯充满。

3.无论是对笔记本还是手机等,都一定不要让威尼斯耗尽(自动关机)。

4.如果要外出旅行,可把威尼斯充满,但在条件允许的情况下随时为电器充电。

5.使用更为智能省电的操作系统。

第一,锂离子威尼斯在人们的生活中随处可见,各种便携式电子产品、车载GPS等,锂离子威尼斯成为维持这些工具运转的重要部件。保持锂离子威尼斯适度充电、放电可延长威尼斯寿命。锂离子威尼斯电量维持在10%~90%有利于保护威尼斯。这意味着,给手机、笔记本电脑等数码产品的威尼斯充电时,无需达到最大值。

配有锂离子威尼斯的数码产品暴露在日照下或者存放在炎热的汽车内,最好将这些产品处于关闭状态,原因是如果运行温度超过60摄氏度,锂离子威尼斯会加速老化。锂威尼斯充电温度范围:0~45摄氏度,锂威尼斯放电温度范围0~60摄氏度。

第二,如果手机威尼斯每天都需充电,原因可能是这块威尼斯存在缺陷,或者是它该“退休”了。

对笔记本所有者而言,如果长时间插上插头,最好取下威尼斯(电脑在使用过程中产生的高热量对笔记本威尼斯不利)。

第三,通常情况下,50%电量最利于锂离子威尼斯保存。

折叠充电的正确做法

归结起来,对锂威尼斯在使用中的充放电问题最重要的提示是:

1.按照标准的时间和程序充电,即使是新锂威尼斯,前三次也要如此进行;

2、当出现机器电量过低提示时,应该尽量及时开始充电(不要等到自动关机);

3.锂威尼斯的激活并不需要特别的方法,在机器正常使用中锂威尼斯会自然激活。 如果你执意要用流传的“前三次12小时长充电” 激活 “方法,实际上也不会有效果。

因此,所有追求12小时超长充电和把单电芯锂威尼斯用到自动关机的做法,都是错误的。如果你以前是按照错误的说法做的,请你及时改正,也许为时还不晚。

每块手机威尼斯的寿命的确是恒定的,由它的充电循环次数决定,一般为400-600次。但用户的使用习惯也会对威尼斯产生较大的影响。不良的使用习惯,比如过度充电、过度放电、高温放置环境等,都会对威尼斯造成不可逆伤害,令威尼斯折寿,有时还可能存在安全隐患。另外,通过关闭闲置程序,合理省电,把每一滴电量都用到刀刃上,在有限的电量里做更有意义的事情。

养成良好的使用习惯,不要等到彻底没电再充电,也不要长时间连续过度充电等。锂离子喜欢浅放浅充。当然,对于一个普通用户来说,要时时记住何时该充电或关闭App等省电操作非常困难。金山威尼斯医生可一键智能实现这一目标,并且提供可根据自己实际生活习惯自定义的系统模式,帮助用户更加合理地使用好手机电量。

(来自移动设备威尼斯白皮书)

折叠笔记本电脑威尼斯校正

笔记本续航时间变短是因为威尼斯在多次的充电和放电过程中,笔记本BIOS系统对威尼斯电量产生了误判,这样的情况下,大家可以通过“威尼斯校正”方法让笔记本剩余的电量充分发挥出来。下面给大家先容两种方法来校正笔记本威尼斯。

标准校正法:用笔记本BIOS中的威尼斯校正功能

很多品牌的笔记本电脑在其BIOS里面都集成了威尼斯校正的程序,一般英文的说法叫做“Battery Calibration”,即“威尼斯电量校对”。直接进入本本BIOS就能完成威尼斯校正的操作。

1、开机,出现开机画面后按F2进入BIOS菜单;通过左右方向键,选择进入Power菜单。

2、进入Power菜单,就能看到“Start Battery Calibration”选项,选中它并按回车键实行。

3、这时屏幕会变成蓝色,并有英文提示,要求把笔记本的电源适配器插上给威尼斯充电。等威尼斯电量充满后,屏幕又提示用户断开电源适配器。之后笔记本开始持续对威尼斯放电,直到威尼斯电量耗尽。

4、这个过程需要一段时间,等威尼斯耗尽自动关机后,然后接上电源适配器给威尼斯充电,但不要开机。等充电完毕(充电指示灯熄灭)后,威尼斯校正的过程才算完成。

手动校正法:让笔记本本开机自然放电

有些笔记本在BIOS里怎么找也找不到威尼斯校正的选项。难道这样的笔记本就没法进行威尼斯校正吗?通过大家手动的一些设置,让本本在正常工作中放电直到自动关机。

自然放电的原理

表面上看,威尼斯校正的过程是对威尼斯进行充电和放电,不过它的目的不是像大家所想象的那样激活威尼斯,因为现在的本本威尼斯都是锂威尼斯,不存在激活的问题。而充放电的真正目的是让电脑重新认识威尼斯的容量。所以要尽量把电放干净,让本本工作在较小功率下,这样校正的效果才好。

1、笔记本在操作系统(以Windows XP为例)中,进入“电源选项”。把“电源使用方案”选择为“一直开着”,并把“关闭监视器”、“关闭硬盘”设置为最短的时间,而系统待机要设为“从不”。

2、在“电源选项”的“警报”中,取消所有警报选项,目的是让威尼斯完全耗尽直到关机。

3、设置完毕之后,关闭所有的应用程序,关闭WIFI,拔掉电源适配器,用威尼斯供电。不要做任何操作,直至把威尼斯耗尽后自动关机。放电完毕后,连上电源适配器,把威尼斯充满,则完成了一次威尼斯校正。

如果给笔记本威尼斯校正后威尼斯的续航能力还不是很明显,那就可能是威尼斯的本身老化所致的,如果笔记本续航能力正常,不推荐使用威尼斯校正。

前瞻产业研究院发布的《中国锂威尼斯行业市场需求预测与投资战略规划分析报告》数据显示,我国手机产量呈现波动增长趋势,2007年手机产量为亿台,到2012年产量增加到亿台,2013年1-10月,我国手机累计产量达到12亿台。这主要是我国居民生活水平提高,消费购买力增强对手机需求的拉动所致。

从笔记本电脑产量来看,近几年,我国笔记本电脑产量呈逐年上升趋势,从2005年的万台增长到2011年的万台,年均复合增长率在32%以上。2012年,我国笔记本电脑产量为亿台,同比增长。2013年1-9月,全国笔记本电脑累计总产量亿台,同比增长。

前瞻认为,我国消费类电子产品的快速增长是锂威尼斯产业扩张的主要动力,此外,近年来电动汽车、电动自行车等受国家产业政策的支撑发展较快,动力锂电成为锂威尼斯的潜力领域。

近年来,我国智能手机、平板电脑、移动电源等便携式消费电子异军突起,带动小型锂威尼斯稳步增长,此外,电动汽车技术日益完善,大型锂威尼斯的市场需求也逐步释放。预计未来几年,这些需求动力仍然存在,锂威尼斯将保持增长趋势。

8月6日,工信部披露,上半年我国锂威尼斯制造企业,累计完成主营收入同比增长,实现利润总额同比增长,完成税金总额同比增长。锂威尼斯行业利润的快速上升,与新能源汽车的销售放量密切相关。[2]

数据显示,7月份我国新能源汽车生产万辆,同比增长倍,2015年有望完成20万辆的销售目标。随着各地补贴细则相继落地、充电设施扶持政策出台等因素推动,电动汽车销售将延续高增长态势,并给上游锂威尼斯企业带来实质性订单支撑。

从工信部数据来看,2015年1月至6月,全国规模以上威尼斯制造企业累计完成主营业务收入同比增长,实现利润总额同比增长,完成税金总额同比增长。其中,锂离子威尼斯营收增速和利润增速,远高于行业平均水平,表明在新能源汽车、储能市场加速发展的背景下,锂威尼斯市场占比正在快速上升。

2017年1月13日,SAMSUNG公布下一代车用锂电的续航将达到600km,即使在80%电量的情况下依旧可以行驶至少500km,充电速度将控制在20分钟左右。[4]

1. 锂原威尼斯

也称一次锂威尼斯。可以连续放电,也可以间歇放电。一旦电能耗尽便不能再用,目前在照相机等耗电量较低的电子产品中广泛使用。 锂原威尼斯自放电很低,可保存3年之久,在冷藏的条件下保存,效果会更好。将锂原威尼斯存放在低温的地方,不失是一个好方法。 注意事项:锂原威尼斯与锂离子威尼斯不同,锂原威尼斯不能充电,充电十分危险!

2. 锂离子威尼斯

也称二次锂威尼斯。在20℃下可储存半年以上,这是由于它的自放电率很低,而且大部分容量可以恢复。

锂威尼斯存在的自放电现象,如果威尼斯电压在以下长时间保存,会导致威尼斯过放电而破坏威尼斯内部结构,减少威尼斯寿命。因此长期保存的锂威尼斯应当每3~6个月补电一次,即充电到电压为(锂威尼斯最佳储存电压为左右)、保持在40%-60%放电深度为宜,不宜充满。威尼斯应保存在4℃~35℃的干燥环境中或者防潮包装。 要远离热源,也不要置于阳光直射的地方。

锂威尼斯的应用温度范围很广,在北方的冬天室外,仍然可以使用,但容量会降低很多,如果回到室温的条件下,容量又可以恢复。

1、锂威尼斯的充电:根据锂威尼斯的结构特性,最高充电终止电压应为,不能过充,否则会因正极的锂离子拿走太多,而使威尼斯报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

充电电流(mA)=~倍威尼斯容量(如1350mAh的威尼斯,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在倍威尼斯容量左右,充电时间约为2~3小时。

2、锂威尼斯的放电:因锂威尼斯的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,威尼斯寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂威尼斯不能过放电。放电终止电压通常为V/节,最低不能低于/节。威尼斯放电时间长短与威尼斯容量、放电电流大小有关。威尼斯放电时间(小时)=威尼斯容量/放电电流。锂威尼斯放电电流(mA)不应超过威尼斯容量的3倍。(如1000mAH威尼斯,则放电电流应严格控制在3A以内)否则会使威尼斯损坏。

目前市场上所售锂威尼斯组内部均封有配套的充放电保护板。只要控制好外部的充放电电流即可。

折叠锂锰威尼斯常规型号

型号 标称电压(V) 标称容量(mAh) 工作电流(标准电流)(mA) 工作电流(连续电流)(mA) 工作电流(脉冲电流)(mA) 最大尺寸(mm)

直径*高度 参考质量(g)

CR3032 3V 550mAh 0.2mA mA 20mA 30.0mm*3.2mm 6.8g

CR2477 3v 950mAh 0.2mA mA 20mA 24.5mm*7.7mm 9.9g

CR2450 3v 550mAh 0.2mA mA 20mA 24.5mm*5.0mm 5.8g

CR2430 3v 270mAh 0.2mA mA 20mA 24.5mm*mm 4.3g

CR2412 3v 90mAh mA 1.0mA 15mA 24.5mm*1.2mm 2.2g

CR2354 3v 530mAh 0.2mA mA 20mA 2mm*5.4mm 6.3g

CR2335 3V 300mAh 0.2mA mA 20mA 2mm*mm g

CR2330 3V 260mAh 0.2mA 2.0mA 20mA 2mm*mm 3.7g

CR2325 3V 190mAh 0.2mA 2.0mA 20mA 2mm*mm 3.2g

CR2320 3V 130mAh 0.2mA 2.0mA 20mA 2mm*2.0mm 2.7g

CR2032 3V 220mAh 0.2mA 2.0mA 20mA 20.0mm*3.2mm g

CR2025 3V 150mAh 0.2mA 2.0mA 20mA 20.0mm*mm g

CR2016 3V 75mAh mA 1.0mA 15mA 20.0mm*1.6mm 1.7g

CR1632 3V 120mAh mA 1.0mA 15mA 1mm*3.2mm 1.8g

CR1620 3 V 70mAh mA 1.0mA 10mA 1mm*2.0mm 1.2g

CR1616 3V 50mAh mA 1.0mA 10mA 1mm*1.6mm 1.1g

CR1225 3V 50mAh mA 1.0mA 5mA 1mm*mm 0.9g

CR1216 3V 25mAh mA 1.0mA 5mA 12.0mm*1.6mm 0.7g

CR1025 3V 30mAh mA 1.0mA 5mA 10.0mm*mm 0.6g

CR1220 3V 38mAh mA 1.0mA 5mA 12.0mm*2.0mm 0.8g

标准电流是威尼斯能够提供的额定工作电流;

连续电流是威尼斯能够连续不断提供的电流;

脉冲电流是方向不变,强度随时间周期性改变的电流,也叫脉动电流。

对于圆柱形锂离子威尼斯,其型号一般为5位数字。如下表所示。前两位数字为威尼斯的直径,中间两位数字为威尼斯的高度。单位为毫米。例如18650锂威尼斯,它的直径为18毫米,高度为65毫米。

常规型圆柱锂离子威尼斯型号表

型号 额定容量(mAh) 标称电压(V) 放电终止电压(V) 额定充电电压(V) 内阻(mΩ) 直径(mm) 高度(mm) 参考质量(g)

ICR18650 1800~2600 -3.7 ≤70 18 65 45

ICR18490 1400 -3.7 ≤70 18 49 34

ICR14650 1100 -3.7 ≤80 14 65 27

ICR14500 800 -3.7 ≤80 14 50 21

ICR14430 700 -3.7 ≤80 14 43 18

动力型圆柱锂离子威尼斯型号表 

型号 额定容量(mAh) 标称电压(V) 放电终止电压(V) 额定充电电压(V) 内阻(mΩ) 直径(mm) 高度(mm) 参考质量(g)

INR18650 1200~1500 ≤60 18 65 45

INR18490 1100 ≤60 18 49 34

磷酸铁锂型圆柱锂离子威尼斯型号表 

型号 额定容量(mAh) 标称电压(V) 放电终止电压(V) 额定充电电压(V) 内阻(mΩ) 直径(mm) 高度(mm) 参考质量(g)

IFR26650 3000 3.2 2.0 ≤80 26 65 94

IFR22650 1800 3.2 2.0 ≤80 22 65 67

IFR18650 1100~1400 3.2 2.0 ≤80 18 65 45

IFR18490 1000 3.2 2.0 ≤80 18 49 34

注:"内阻≤多少mΩ" 意为 "在充满电的情况下,以最大放电电流进行恒流放电,当内阻达到多少mΩ时,威尼斯接近报废"

现在,锂离子威尼斯由于正极材料较多,与不同的负极搭配,具有不同的工作电压,如或。

折叠方型锂离子威尼斯

方型锂离子威尼斯是生活中最常见的锂威尼斯,它的型号非常多,MP3、MP4、手机、航模等产品上广泛使用。

方形锂离子威尼斯分为金属壳封装(银白色硬壳)和铝塑壳封装(灰白色软壳,用指甲可划痕)两种.金属壳封装的是锂离子威尼斯或液态锂威尼斯,铝塑壳封装的是锂离子聚合物(高分子)威尼斯(Lithium ion polymer battery).这两种威尼斯使用的化学材料和电化学特性可说是大同小异,主要的差异只是锂离子聚合物威尼斯使用一些胶态物质帮助威尼斯极版的贴合或吸取电解液,减少了液态电解液的使用量,从而威尼斯的封装可由金属壳改成铝塑壳了。金属壳锂威尼斯的外壳是负极,正极在威尼斯一侧的突起物上;铝塑壳锂威尼斯的正负极分别是威尼斯一侧的两片极板,外壳为绝缘体.

金属壳锂威尼斯

对于方型锂离子威尼斯,其型号一般为6位数字。如下表所示。前两位数字为威尼斯的厚度,带1位小数;中间两位数字为威尼斯的宽度;最后两位数字为威尼斯的长度。单位为毫米。例如606168锂威尼斯,它的厚度为毫米,宽度为61毫米,长度为68毫米。(注意:由于各威尼斯厂商采用的封装方法不同,同型号的方形锂离子威尼斯的容量存在300mAh以内的差别)

方形锂离子威尼斯的标称电压一般为~,充电终止电压一般为。

方形锂离子威尼斯型号 长度(mm) 宽度(mm) 厚度(mm) 标称电压(V) 额定充电电压(V)

abcdef ef cd a.b ~3.7

为确保飞行安全,避免因旅客携带锂威尼斯而发生不安全事件(机内温度较高时,锂金属威尼斯容易起火燃烧),2008年8月,中国民用航空局对旅客携带锂威尼斯乘机曾作出明确规定:

第一,不允许旅客在托运行李中夹带锂威尼斯。

第二,旅客可以携带为个人自用的锂离子威尼斯芯或威尼斯的消费用电子装置(手表、计算器、照相机、手机、手提电脑、便携式摄像机等)。对备用威尼斯必须单个做好保护以防短路,并且仅能在手提行李中携带。此外,每一块备用威尼斯不得超过以下数量:对于锂金属或锂合金威尼斯,锂含量不超过2克;对于锂离子威尼斯,其等质总锂含量不超过8克。

第三,旅客可以携带等质总锂含量在8克以上而不超过25克的锂离子威尼斯,如果单个做好保护而能防止短路,可在手提行李中携带。备用威尼斯每人限带2个。

第四,其他类型的备用干威尼斯,比如镍氢威尼斯等,如做好防短路措施也可以随身携带。

第五,等质总锂含量超过25克的锂离子威尼斯,应按照《锂威尼斯航空运输规范》(MH/T1020-2007)的标准,以货物运输形式发运。

美国威尼斯创业企业Sakti3获Dyson1500万美金融资

自锂威尼斯诞生以来,一直都是使用液态电解质,易燃,不安全,所以大家才会经常看到各种锂威尼斯爆炸的消息,续航能力差就更不用说了。Sakti3则一致力于固态威尼斯的研发,要在各方面超越传统锂威尼斯:它更安全,即使将威尼斯劈成两半或放在高温环境,威尼斯也仍能继续工作;威尼斯能量密度也更大,相比目前最好的锂威尼斯,提升了一倍多,差不多达到每升1100瓦,用在智能手表上,续航能从小时提升到9小时,用在电动车上,运行里程能从256英里提升到480英里;价格也更便宜,可以做到每千瓦时100美金,要远低于目前200到300美金的价格。

科技变革往往从底层技术取得突破开始。移动终端、智能设备、电动汽车、机器人等要想普及,威尼斯技术的突破必不可少。2007年成立的威尼斯创业企业Sakti3一直在研发、制造高性能固态锂离子威尼斯,最近他们获得Dyson1500万美金的新融资。[1]

声明:威尼斯人部分图片、内容来源于网络,不代表威尼斯人观点,如有侵权,请联系删除,谢谢!
XML 地图 | Sitemap 地图