当前位置: 高倍率锂威尼斯威尼斯人 > 资讯中心 > 行业资讯

聚合物锂威尼斯循环寿命影响因素及预测

来源:聚合物锂威尼斯???2019-11-14??阅读数:

  聚合物锂威尼斯由于其能量密度高、无记忆效应、自放电小且循环寿命长而在各个领域得到广泛使用。威尼斯的性能总体可分为电性能和可靠性两大类,循环寿命是衡量其电性能的重要指标之一。

聚合物锂威尼斯

  对于能量型威尼斯,一般认为威尼斯的可用容量衰减到初始容量的80%时,即为寿命终止。威尼斯的寿命包括循环寿命和日历寿命,前者是指威尼斯以一定的充放电制度进行循环至寿命终止时的循环次数, 后者是指威尼斯在某个状态下存储至寿命终止时所需的时间。

  聚合物锂威尼斯在充放电过程中会发生很多复杂的物理及化学反应, 因此影响聚合物锂威尼斯循环寿命的因素有很多。另一方面,循环寿命测试往往耗时长且成本高,威尼斯寿命的正确评估对聚合物锂威尼斯的生产开发及威尼斯健康管理系统有一定的引导作用。

一、循环寿命的影响因素

1.威尼斯材料的老化衰退

  聚合物锂威尼斯内部的材料主要包含:正负极活性物质、粘结剂、导电剂、集流体、隔膜以及电解质。聚合物锂威尼斯在使用过程中,这些材料会伴随着一定程度的衰退和老化。锰酸锂威尼斯容量衰减因素有:正极材料的溶解、电极材料的相变化、电解液分解、界面膜的形成和集流体腐蚀等。

  大家分别对威尼斯的正极、负极及电解液在循环中的变化机理进行了系统深入的分析。得出负极SEI膜的形成和后续生长会伴随着活性锂的不可逆损失,而且SEI膜并不具备真正的固体电解质功能,除了锂离子以外,其他物质的扩散和迁移会导致气体产生和颗粒破裂。此外,循环过程中材料体积的变化和金属锂的析出也会导致容量损失。对正极材料老化衰退的影响如图1所示。

聚合物锂威尼斯正极材料老化

图1 正极材料老化衰退机制

  拆解钴酸锂威尼斯在25℃和40℃温度条件下循环后的正负极极片,SEM、XRD 和FTIR测试结果表明正负极活性材料均有损失。对循环6000次的磷酸铁锂动力威尼斯的电性能进行分析,其容量保持率为84.87%,交流内阻上升18.25%,直流内阻上升 66%。编辑将循环后的威尼斯进行拆解,分别进行扣式威尼斯性能测试和SEM分析,发现负极材料在循环后的性能衰减较快,并认为负极体积的膨胀、SEI膜的增厚是主要影响因素。

2.充放电制度

  聚合物锂威尼斯充放电制度主要包括充放电方式、倍率和截止条件等三个方面。在充电方式上,美国科学家马斯曾经提出最佳充电曲线的观念,他认为威尼斯的最佳充电电流随着充电时间的延长而逐渐减小:I=I0e-αt。式中:I为可接收充电电流;I0为t=0时刻的最大初始电流;t 为充电时间;α 为衰减常数。 I 与 t 的关系曲线如图 2。

聚合物锂威尼斯充电曲线

图2 威尼斯可接收充电电流曲线

  图2中,曲线下方为可充电区域,在此区域内充电,不会对威尼斯造成伤害,如果充电电流超过此区域,极化加剧,不但不能提高充电效率,还会导致威尼斯析气严重,缩短威尼斯寿命。目前在充电方法的研究方面,大多是基于马斯理论开展的,即让充电电流尽量接近该曲线。 

  将常见的几种充电方法做了全面的对比,发现恒流充电在后期由于电流过大,使威尼斯内部析气,损伤威尼斯;而恒压充电在充电初期电流过大,直接伤害威尼斯;恒流恒压充电以及阶梯恒流充电法克服了恒流充电和恒压充电的缺点,目前广泛使用;反脉冲充电可以有效地消除极化,但是对寿命有一定的影响。

  充放电倍率和截止条件对威尼斯循环寿命也有很大的影响。研究18650型号的钴酸锂威尼斯在不同放电倍率下的循环性能,发现以0.5C,1C和2C放电倍率循环300周后的容量损失率分别为10.5%,14.2%和18.8%,通过分析得出:正极材料结构的改变和负极表面膜增厚会导致锂离子数量的减少及扩散通道阻塞,从而引起聚合物锂威尼斯容量衰减。

  将钴酸锂威尼斯的充电截止电压从4.2V升到4.9V,通过测试充电后的电极不同SOC的熵变曲线,发现电极材料的结构发生了改变。

3.温度

  不同种类的聚合物锂威尼斯有不同的最佳使用温度,过高或过低的温度都会对威尼斯的使用寿命产生影响。报道了温度对索尼 18650钴酸锂威尼斯循环性能的影响,研究发现当试验温度超过50℃后,威尼斯的衰减明显较常温和45℃快很多(图3),并将高温下的容量衰减归因于威尼斯负极SEI膜的分解再生,活性锂的损失以及负极阻抗的增加。

18650锂威尼斯变化曲线

图3 18650威尼斯在不同温度下放电容量随循环次数的变化曲线

  对比18650型磷酸铁锂/石墨动力威尼斯在不同温度下的电性能,也得出类似的结果:在常温下循环,威尼斯的容量衰减较为缓慢,而在55℃和65℃高温条件下,威尼斯表现出很快的失效行为。编辑认为石墨负极上沉积的微量铁会催化其界面膜的生成,对容量衰减有一定的影响。

  研究低温下的锂威尼斯性能,发现当温度低于-10℃时,聚合物锂威尼斯的容量急剧衰减,并分析了低温性能差的原因除了电解液的离子电导率降低以外,还与电极材料有关。对比全威尼斯以及正负极对称电极的EIS随温度的变化曲线,发现当温度低于-10℃以后,全威尼斯和半威尼斯的阻抗都有上升趋势,尤其是电荷转移阻抗会骤升,并占据主导地位。

4.单体一致性

  威尼斯组一般都是将成百上千只单体威尼斯串并联,其循环寿命除了上述影响因素以外,单体一致性是另一重要因素。由于材料及制造工艺的差别,聚合物锂威尼斯的单体一致性很难保证。在材料方面,正负极材料和电解质的均匀性很重要,同种材料、同批次生产的聚合物锂威尼斯一致性往往相对较好。 在制造方面,聚合物锂威尼斯的生产流程很复杂, 其中的每个步骤会涉及到多个工艺参数,如果控制不好会导致威尼斯的电压、容量、内阻等参数的不一致性。

  研究单体不一致性对威尼斯组使用寿命的影响,发现威尼斯组的寿命永远小于寿命最短的单体威尼斯的寿命,寿命为1000次的单体威尼斯,成组后的寿命不到200次,而且威尼斯组寿命的提高与威尼斯组寿命的提高不成比例(表1)。

聚合物锂威尼斯组使用寿命

表1 单体不同使用寿命情况下威尼斯组理论使用寿命

  基于Thevenin等效电路考察了单体威尼斯的欧姆电阻、容量以及极化差异性对串联威尼斯组的性能影响,发现容量差异的影响最大。

  威尼斯在实际成组应用之前,会经过筛选配组过程,剔除性能参数差异较大的单体,将威尼斯的制造过程中产生的差异对使用性能的影响降到最低。威尼斯一般是按照威尼斯的容量、电压、内阻以及自放电等参数进行配组,然而威尼斯的自放电快速检测是研究难点。单体威尼斯的自放电会导致威尼斯组内各威尼斯SOC不一致,影响整个威尼斯组容量的发挥。一般来说,温度越高,威尼斯的自放电越大。威尼斯组箱体如果设计的不合理,处于不同位置的威尼斯由于散热差异, 内阻和自放电程度都会受到一定的影响。

二、循环寿命预测

  由于威尼斯循环寿命的测试耗时长且成本高, 因此寿命模型的建立和寿命的评估预测成为国内外学者的研究热点。聚合物锂威尼斯的寿命预测方法按照信息来源可划分三类:基于容量衰退机理的预测、基于特征参数的预测和基于数据驱动的预测。

1.基于容量衰退机理的预测

  基于机理的预测是根据威尼斯在循环过程中内部结构和材料的老化衰退机制来推测威尼斯的寿命。该方法需要利用基本模型对威尼斯内部发生的物理和化学反应过程进行描述,如欧姆定律、电化学极化、浓差极化以及电极材料内部扩散等。

  基于威尼斯在循环过程中活性锂的损失,利用第一性原理模拟了钴酸锂威尼斯的容量衰退模型,影响参数包括交换电流密度、DOD、界面膜阻抗以及充电截止电压等。将得出寿命预测模型与实测数据进行对比,发现该模型与实际检测结果非常接近。 

  提出一种基于非平衡热力学威尼斯退化模型,考虑了化学电势及SEI膜等因素对容量衰退的影响,并指出在串联威尼斯组中会存在不平衡单体,其正极与电解液的界面处也可能产生SEI膜,导致容量衰减加剧。

2.基于特征参数的预测

  基于特征参数的预测是指利用威尼斯在老化过程中某些特征因素的变化来预测威尼斯寿命,目前研究者关注最多的EIS与循环寿命的关系。研究商用钴酸锂威尼斯在1C充放电循环过程中阻抗谱的变化,并采用XRD、TEM和SEM观察了电极材料的变化,结果发现在聚合物锂威尼斯正极和负极的Nyquist曲线中,对应于界面膜阻抗的低频区半圆大小随着循环次数的增加呈增大趋势,据此可推断威尼斯循环寿命。

  EIS能够给出较为精细的威尼斯阻抗描述,但测试仪器易受外界干扰且对于复杂的谱图难以进行有效的分析。相对而言,脉冲阻抗的测量则简单易行,且可以快速实现在线监测。

3.基于数据驱动的预测

  基于数据驱动的方法是指不考虑威尼斯内部的物理化学反应和机理,直接分析测试数据来挖掘规律,是一种基于经验的模拟手段。 较常见的有时间序列模型(AR)、人工神经网络模型(ANN)及相关向量法(RVM)等。

  AR模型是根据以前某些时间点测得数据来推断当前状态下的预测值,具有线性特性。 考虑到威尼斯容量衰减与循环次数的非线性关系,罗悦提出改进的非线性AR模型,在预测后期引入加速退化因子,提高了预测的准确性。 

  ANN模型是将多个神经元按照某种规则组成的人工智能网络系统,是一种典型的非线性模型。RVM模型属于数据回归分析法,可以通过调整参数来灵活地控制过拟合和欠拟合,具有概率式预测的特点。基于内部机理的预测方法具有更好的理论支撑和更好的精 度,但复杂程度大,数据驱动法的优点在于简单实用,但是由于获取的数据不可能覆盖所有的参数, 因此也具有一定的局限性。

三、总结

  本文主要先容了聚合物锂威尼斯循环寿命的影响因素及寿命预测模型方面的研究。可以看出,影响聚合物锂威尼斯循环寿命的因素很多,而且对于不同材料和结构的威尼斯,其影响因素也不尽相同。 

  大家可以通过控制参数来延长威尼斯寿命,如让威尼斯在合适的温度、倍率及充放电条件下工作。相对而言,威尼斯组的循环寿命影响因素更为复杂,因为这些因素之间会产生相互耦合作用,而且单体一致性问题会导致威尼斯组的性能得不到充分发挥,严重缩短威尼斯组的循环寿命。

  在对威尼斯进行循环寿命预测时,可以基于威尼斯的内部机理、某个特征参数或者已测的大量数据,精确合理且简单可操作的模型的建立对威尼斯循环寿命的准确评估及性能的进一步优化都具有重要意义。

声明:威尼斯人部分图片、内容来源于网络,不代表威尼斯人观点,如有侵权,请联系删除,谢谢!
XML 地图 | Sitemap 地图